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We discuss the linear stability of a cross-doubly-diffusive fluid layer with surface
tension variation along the free surface. Two limiting cases of the mass flux basic state
are considered in the presence of non-zero Soret and Dufour diffusivities. The first case,
which has remained largely unexplored, is one where a temperature difference, ∆T{ , and
a concentration difference, ∆C{ , are both imposed across the layer. The second case,
which has greater significance to thermosolutal systems, is that where the imposed ∆T{
across the layer induces a ∆C{ . We rescale the problem in the absence of buoyancy,
which leads to a more concise representation of neutral stability results in and near the
limit of zero gravity. We obtain exact solutions for stationary stability in both cases.
One important consequence of the exact solutions is the validation of recently
published numerical results in the limit of zero gravity. Moreover, the precise location
of asymptotes in relevant parameter (Sm

c
,Ma

c
) space are computed from exact

solutions. Both numerical and exact solutions are used to further examine stability
behaviour. We also derive algebraic expressions for stationary stability, oscillatory
stability, frequency, and codimension two point from a one-term Galerkin ap-
proximation. The one-term solutions qualitatively reflect the stability behaviour of the
system over the parameter ranges in our investigation. A practical consequence is that
the nature of the stability (oscillatory or stationary) for a given set of parameter values
can be determined approximately, without solving the numerical eigenvalue problem.

1. Introduction

In two-component systems, the gradient of one component often establishes or
contributes to a flux of the other component. Such diffusion transport processes are
commonly referred to as cross-diffusion. A temperature gradient that forces a
concentration gradient in a binary fluid is an example of cross-diffusion also known as
the Soret effect. Cross-diffusion is also observed in ternary systems, or isothermal
systems with coupled diffusion between the solvent and two solutes. Occasionally both
cross-diffusive terms are retained in ternary systems because flux contributions from
the gradient of each component is significant. Intensive experimental and theoretical
investigation of binary fluid convection has recently been stimulated by microgravity
applications such as containerless processing and semiconductor crystal growing. The
study of cross-diffusion has also been motivated by its importance to macromolecular
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polymers, species separation processes, terrestrial materials processing, and ocean-
ography (McDougall 1983; Henry 1990; Legros et al. 1990).

Hurle & Jakeman (1969, 1971) observed that small amounts of solute present in
thermosolutal systems such as crystal growth melts give rise to convective instabilities.
These observations and the ensuing analysis confirmed the important role that the
‘Soret effect ’ plays in establishing instabilities of certain binary-fluid systems in the
presence of buoyancy (Platten & Chavepeyer 1973; Henry & Roux 1988; Henry 1990;
Jacqmin 1990).

From microgravity processes with free surfaces such as float zone crystal growth
techniques, surface tension variations along the free surfaces augment and typically
replace buoyancy as the source of the convective instability. In connection with such
low-gravity applications, Chen & Chen (1994) recently conducted an extensive
numerical study of the stability of an unbounded binary fluid layer in the presence of
both buoyancy and surface tension variations along the free surface. A basic state is
assumed where the imposed temperature gradient across the layer induces a
concentration gradient. This problem was originally studied by Castillo & Velarde
(1978), with coupled thermal and solutal buoyancy terms while leaving the surface
tension terms uncoupled. (The thermal and solutal Marangoni numbers remain
independent when the surface tension variations are uncoupled.) Chen & Chen (1994)
recognized that thermal and solutal effects are coupled for both buoyancy and surface
tension terms when the applied temperature gradient induces a concentration gradient
across the fluid layer. Stability behaviour for a comprehensive set of parameter values
is explored in their analysis which also includes the zero gravity limit.

Finger formation in polymer solutions motivated McDougall (1983) to examine the
cross-diffusive Rayleigh–Be!nard problem for a fluid layer where temperature and
concentration gradients are both imposed across the layer. McDougall extended
Stern’s stability analysis of thermohaline convection (1960) to include both cross-
diffusive coefficients. Shear-free boundaries were applied yielding an exact solution to
the cross-diffusive problem in the presence of buoyancy. A second study reporting
results with temperature and concentration gradients applied across a fluid layer is that
of Torrones & Chen (1993). Both basic states, induced concentration gradient and
applied concentration gradient are considered in their investigation of a gravity-
modulated cross-diffusive fluid layer.

In this paper, the onset of convection due to surface tension variations for an
unbounded double diffuse fluid layer is examined. Both cross-diffusive terms are
retained in the analysis and two limiting cases of the basic state mass flux are
considered. In the first case, a temperature difference, ∆T{ , and a concentration
difference, ∆C{ , are both imposed across the fluid layer. This basic state is similar to the
buoyancy induced instability studied by McDougall (1983) in connection with ternary
systems. The second case which has greater significance to thermosolutal systems is
that where the imposed ∆T{ across the layer induces a ∆C{ . Chen & Chen (1994) have
partially explored this limit as part of their combined buoyancy and surface tension
stability analysis. We rescale the problem in the absence of buoyancy, which leads to
a more concise representation of neutral stability results in and near the limit of zero
gravity. More significantly, exact solutions for stationary stability are derived in both
cases. One important consequence of the exact solutions is the validation of recently
published numerical results in the limit of zero gravity. Moreover, the precise location
of asymptotes in relevant parameter (Sm

c
, Ma

c
) space are computed from exact

solutions. The effects of finite disturbance heat and mass transfer from the free surface
on stationary stability are also explored with the exact solutions. An interesting
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observation is that the expression defining the asymptote for an insulated and an
impermeable free surface reduces to the identical form reported by Hurle & Jakeman
(1971) for the buoyancy problem when free boundaries are invoked.

We focus on the thermosolutal problem where the Soret effect is often important and
the other cross-diffusive term, the Dufour term, is negligible. For both basic states
described above, the influence of the Soret diffusion term on the system stability is
investigated over a broad range of parameter values. The effect of thermal diffusion on
stability boundaries in the more familiar (Ms

c
,Ma

c
) space is also examined for the

standard Soret diffusion system reported in the literature (water–methanol ; Hurle &
Jakeman 1971). Although emphasis is given to thermosolutal systems, a ternary system
(KCl–NaCl–water) where both cross-diffusive coefficients are non-zero is considered
briefly.

Linear stability behaviour of double diffusive systems has typically been examined
through an extensive set of graphical results that are generated by the numerical
solution of the eigenvalue problem. An alternative approach is that of exploiting one-
term Galerkin expansions to obtain approximate algebraic expressions that charac-
terize the double diffusive layer stability. Such one-term approaches were advocated by
Finlayson (1972) who also demonstrated their applicability for the singly diffusive
Rayleigh–Be!nard and Marangoni–Be!nard problems. Gershuni & Zhukhovitskii (1976)
illustrated the use of one-term Galerkin solutions for several variations of the
Rayleigh–Be!nard problem, although the accuracy of these models is not discussed. We
employ a one-term Galerkin formulation to derive explicit relations for predicting
stationary stability, oscillatory stability, frequency, and location of the codimension
two point. Results from exact and higher-order numerical solutions are used to assess
the accuracy and usefulness of the derived algebraic expressions. A comparison of the
Galerkin one-term basis functions to the exact and higher-order numerical eigenvectors
is also presented.

2. Governing equations

We consider the unbounded cross-doubly-diffusive fluid layer with dimension 0%
x
$
% d. Buoyancy is neglected, and onset of convection due to surface tension variation

is examined. The basic state differentiates the two cases of the cross-diffusion we will
investigate. For the case when temperature and concentration profiles are imposed, the
velocity, temperature, and concentration basic state profiles are :
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Difference quantities of the form ∆ya are defined as ∆ya ¯ ya (0)®ya (d ). In the case of
Soret diffusion, the applied temperature difference across the layer establishes a
concentration gradient, thus the base concentration difference in this case becomes:
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where i, j¯ 1, 2, 3 ; and u
i
, θ and c are the perturbation variables for velocity,

temperature, and concentration, respectively. The kinematic viscosity, ν, and diffusivity
elements, D

mn
, are assumed constants. The lower surface at x

$
¯ 0 is rigid (u

j
(0)¯ 0),

conductive (θ(0)¯ 0), and permeable (c(0)¯ 0). The upper surface at x
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¯ d is free and

non-deforming, yielding
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where k¯ 1, 2 and µ is the dynamic viscosity with constant value. Equation (4b) is the
disturbance tangential stress condition in the x

"
and x

#
directions at the free surface.

Surface tension, σ, is approximated as a linearized function of the diffusion
components, T and C, σ¯σ

!
®γ

"
(T®T{ )®γ

#
(C®C{ ). The surface tension variation

with temperature, γ
"
, and the surface tension variation with concentration, γ

#
, are

defined as γ
"
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C,P
and γ

#
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T,P
, respectively (Adamson 1982).

Consideration of heat and mass transfer from the free surface to the environment
establishes the remaining two boundary conditions imposed on equations (2) and (3).
Continuity of heat and mass transfer across the upper surface leads to
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2.1. Imposed temperature and concentration gradients

When both temperature and concentration gradients are imposed, reference values for
length, velocity, time, temperature, and concentration are chosen as:
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The resulting non-dimensional parameters are Prandtl number, Pr, diffusivity ratio, τ,
Dufour coefficients, Dm, Soret coefficient, Sm, Marangoni number, Ma, solutal
Marangoni number, Ms, surface Nusselt number, Nu, and surface Sherwood number,
Sh, as defined below:
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Alternatively, the commonly chosen temperature and concentration reference
values, ∆T{ and ∆C{ , lead to the ratio of these differences also appearing in the
dimensionless cross-diffusive terms, as in the cross-diffusive Rayleigh–Be!nard study by
McDougall (1983). Our choice of temperature and concentration reference values
restricts the occurrence of ∆T{ and ∆C{ to Ma and Ms, respectively. Therefore stability
can be examined in the methodical fashion commonly undertaken, where the
remaining dimensionless parameters characterize a given fluid system and thus are
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fixed by choice of fluid system, while operating conditions of the system are
characterized by Ma and Ms. In the absence of buoyancy, the surface tension Soret
coefficient, Sm, and surface tension Dufour coefficient, Dm, naturally arise from the
non-dimensionalization. These parameters are analogous to the Soret and Dufour
coefficients obtained in the buoyancy problem except that they are based on the ratio,
γ
"

and γ
#
, rather than the ratio of thermal expansion coefficients, β

"
and β

#
. It will

become apparent that these are more suitable in the absence of buoyancy than
adaptation of the Soret separation ratio used in previous studies (Castillo & Velarde
1978; Chen & Chen 1994).

After non-dimensionalizing the equations, solutions are assumed of the form,
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and the resulting normal mode equations are given, equations (6), (7) and (8), where
α#¯α#

"
α#

#
. (The same symbols are used for non-dimensional and dimensional

variables.)
λ(D#®α#)w¯Pr(D#®α#)#w, (6)

λφ¯ (D#®α#) (φDmχ)Maw, (7)

λχ

τ
¯ (D#®α#) (Smφχ)Msw. (8)

The corresponding normal mode boundary conditions are given below:

w(0)¯ 0, Dw(0)¯ 0, φ(0)¯ 0, χ(0)¯ 0. (9a–d )

At upper surface, x
$
¯ 1

w(1)¯ 0, ®D#w¯α#(φχ), (10a, b)

DφDmDχNuφ¯ 0, SmDφτDχShχ¯ 0. (10c, d )

2.2. Induced concentration gradient (Soret problem)

When concentration gradients are induced by temperature, i.e. Soret diffusion, the
reference values for T and C are redefined as ∆T{ and ®(D

#"
}D

##
)∆T{ analogues to the

buoyancy problem (Hurle & Jakeman 1971). All other reference values and
dimensionless parameters remain as previously defined. However, Ms is eliminated
from our parameter set when ∆C is induced by ∆T across the fluid layer.

The disturbance equations become:

λ(D#®α#)w¯Pr(D#®α#)#w, (11)

λφ¯ (D#®α#)φ®SmDm(D#®α#)χMaw, (12)

λχ¯ τ(®(D#®α#)φ(D#®α#)χ)Maw. (13)

Boundary conditions at the lower surface, equations (9a)–(9c) as well as (10c) at the
upper surface remained unchanged. However, non-dimensional forms of the tangential
stress balance and the flux conditions at the free surface take the following forms: At
the upper surface, x

$
¯ 1

w¯ 0, ®D#w¯α#(φ®Smχ), (14a, b)

Dφ®SmDmDχNuφ¯ 0, ®DφDχShχ¯ 0. (14c, d )

3. Stationary stability – exact solutions

Stability characteristics are examined in this and following sections for broad ranges
of relevant dimensionless parameters. Emphasis is placed on the thermosolutal systems
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where the Dufour coefficient, Dm, can be neglected, and the remaining non-zero cross-
diffusive coefficient is the Soret coefficient, Sm. Systems where an applied temperature
gradient induces a concentration gradient are considered in §3.2. Such conditions were
the focus of the analyses by Hurle & Jakeman (1971), Castillo & Velarde (1978), and
Chen & Chen (1994). We consider the case where both gradients are imposed across
the fluid layer, analogous to the cross-diffusive-Rayleigh–Be!nard problem considered
by McDougall (1983).

3.1. Imposed temperature and concentration gradients

The stationary stability results, λ¯ 0, for the cross-doubly-diffusive Marangoni–
Be!nard problem are first examined. Solving the problem posed by equations (6)–(10)
we obtain the following exact solution for stationary stability when both ∆T{ and ∆C{
are imposed:

2α#®α sinh 2α

α$ coshα®(sinhα)$

®
Ma((1®Sm)α coshαSh sinhα)Ms((1®Dm)α coshαNu sinhα)

4²(α coshαNu sinhα) (α coshαSh sinhα)®SmDmα# cosh#α´
¯ 0. (15)

Setting Sm and Dm to zero, we recover McTaggart’s result for the double-diffusive
Marangoni problem with no cross-diffusion. Further inspection of (15) reveals that
stationary stability is independent of both Pr and τ. When Dm is sufficiently small, as
arises for typical cross-diffusive-thermosolutal systems such as water-methanol, Ma is
simply proportional to (1®Sm)−". A less stringent criterion is SmDmi 1 which is
directly established from the exact solution above. Review of cross-diffusivity values
(Cussler 1995) confirms this criterion holds for most cross-diffusive thermosolutal and
ternary systems. A second consequence of satisfying this criterion is that the cross-
diffusion effects occur only in terms of Sm and Dm in the numerator of (15).

The effects of Nu and Sh on stationary stability are investigated in (Ma
c
,Ms

c
) space

shown in figures 1 and 2 for the thermosolutal (water–methanol) and ternary
(KCl–NaCl–water) systems, respectively. For the double-diffusive-Marangoni problem
with no-cross-diffusion, McTaggart (1983) concluded that larger values of Nu and Sh
lead to greater stability. Our results in figures 1(a) and 2(a) show that a larger value
of Nu (Sh) is stabilizing when Ma

c
(Ms

c
) is positive which agrees with McTaggart’s

conclusion. However, a larger value of Nu (Sh) is destabilizing when Ma
c

(Ms
c
) is

negative which is counter to McTaggart’s conclusion. Setting Dm and Sm to zero in
(15) confirms that our observations apply to the no-cross-diffusion case as well. A
physical explanation follows from energy availability}dissipation arguments (Chandra-
sekhar 1981). For a destabilizing temperature gradient, the limit of a conductive free
surface, NuU¢, is stabilizing in the usual sense in that the fraction of internal energy
available to overcome viscous dissipation is reduced. On the other hand, increasing the
surface Nusselt number is destabilizing for the stabilizing temperature gradient. By
approaching a conductive boundary, a smaller fraction of the internal energy is
available to oppose the destabilizing influence of the imposed concentration gradient.
An analogous argument can be made in terms of Sh for the mass flux condition.

The cross-diffusive results shown in figures 1(b) and 2(b) reveal that the critical
wavenumber, α

c
, is constant for all (Ma

c
,Ms

c
) when Nu¯Sh¯ 0. This is consistent

with McTaggart’s observations for no cross-diffusive problem. She also notes that α
c

increases with increasing Nu (for fixed Sh). We find this is true so long as Ms
c

is
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Instability occurs above the
stationary stability boundaries
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F 1. Effect of disturbance heat and mass fluxes, Nu and Sh on stationary stability for a basic
state where ∆T{ and ∆C{ are both imposed across the layer. (a) Ms

c
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c
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c
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c
for Sm¯®0.0288 and Dm¯ 0.
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F 2. Effect of disturbance heat and mass fluxes, Nu and Sh on stationary stability for a basic
state where ∆T{ and ∆C{ are both imposed across the layer. (a) Ms

c
vs. Ma

c
for Sm¯ 0.072 and

Dm¯ 0.183. (b) Ms
c
vs. α

c
for Sm¯ 0.072 and Dm¯ 0.183.

negative. For increasing Ms
c
, figures 1(b) and 2(b), show that α

c
decreases when Nu"

Sh and increases when Nu!Sh. We also observe that α
c

increases (decreases) with
Nu (Sh) for a stabilizing concentration gradient. These effects of Nu and Sh are
reversed for destabilizing concentration gradients. Explanation for the apparent
contradictory α

c
behaviour is again offered in terms of available energy and dissipation.

For increasing Nu (Sh) the destabilizing temperature (concentration) gradient is driven
to larger values, owing to the larger stabilizing concentration (temperature) gradient
and Nu (Sh) values. Therefore, a larger amount of energy is released by surface tension
forces and must also be dissipated at neutral stability leading to larger critical
wavenumbers. Larger α

c
implies that a greater number of smaller sized cells occur

along the fluid layer, thereby enhancing dissipation. Somewhat surprisingly, at fixed
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F 3. Influence of Soret parameter, Sm, on critical Marangoni number, Ma
c
. ∆T{ and ∆C{ are

imposed at boundaries ; Nu¯ 0, Sh¯ 0, and Dm¯ 0. Stationary boundaries are thin black lines and
oscillatory boundaries are thick grey lines. Oscillatory instability occurs above the oscillatory stability
boundaries.

destabilizing concentration gradient (Ms
c
), value, α

c
decreases with increasing Nu.

Apparently, the stabilizing potential of the temperature gradient increases with
increasing Nu. This is suggested in figures 1(a) and 2(a) by the decrease in Ma

c
for fixed

Ms
c
values. Therefore, less dissipation is required to offset the energy released by the

destabilizing concentration gradient, and this leads to a smaller number of larger cells,
i.e. smaller α

c
. A similar argument follows for the decrease in α

c
associated with

increasing Sh values in the presence of stabilizing concentration gradient.
The effect of the Soret diffusion coefficient on neutral stability is shown in figure 3

in terms of Sm for the case of imposed temperature and concentration gradients.
Because Dm is negligible in the overwhelming majority of thermosolutal and ternary
systems, we set it to zero and neglect the Dufour effect. (A ternary example where both
cross-diffusive coefficients are non-zero is briefly studied in §4.1.) The cross-diffusive
effects are then completely characterized by Sm and can be compared to the problem
where the concentration gradient is induced by the temperature gradient across the
layer. Both Nu and Sh are zero and three curves for constant Ms values of ®100, 0,
100 are shown in figure 3. While an asymptote is observed at Sm¯ 1, physically
realizable systems lie to the left of this value. For this region, increasing values of the
Soret parameter, Sm, are stabilizing (destabilizing) for systems with destabilizing
(stabilizing) temperature gradients across them. For the present problem, where both
temperature and concentration differences are imposed across the layer Ma, Ms and
Sm are coupled as Ms}Ma£Sm. A consequence of this coupling is that Ma must go
to zero as rSm

c
rU¢ for all values of Ms

c
.
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F 4. Effect of diffusivity ratio, τ, on stability maps in (Sm
c
,Ma

c
) space. ∆C{ is induced by applied

∆T{ for Dm¯ 0, Nu¯ 0, Sh¯ 0. Oscillatory instability occurs above the oscillatory boundaries in the
upper right-hand quadrant. (a) Sm

c
vs. Ma

c
. (b) Sm

c
vs. α

c
(for oscillatory boundaries only).

3.2. Induced concentration gradient (Soret problem)

We now consider stationary stability for the problem where the applied temperature
difference across the fluid layer induces a concentration gradient which is commonly
referred to a Soret diffusion. The numerical studies of Castillo & Velarde (1978) and
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Chen & Chen (1994) assume an insulated free surface, Nu¯ 0, leading directly to the
impermeable condition, Sh¯ 0. In both studies, the combined effects of buoyancy and
surface tension are treated. By neglecting buoyancy but retaining the more general flux
conditions of equations (14c) and (14d ), we obtain the following exact solution for
stationary stability of the double diffusive Soret problem. For generality we also retain
the Dufour diffusivity term in the energy equation.

Ma Sm 1
1®Dm

τ
®1 α coshα

Nu

τ
Sm®Sh sinhα

2²(SmDm®1)α#(1cosh 2α)NuSh(1®cosh 2α)®(NuSh)α sinh 2α´


8α#®4α sinh 2α

sinh 3α®3 sinhα®4α$ coshα
¯ 0. (16)

Stationary stability results from (16) are shown in figure 4, for different values of τ.
The overall behaviour in (Sm

c
,Ma

c
) space is quite similar to the Rayleigh–Be!nard

stationary stability results in (Sr
c
,Ra

c
) space reported by Hurle & Jakeman (1971)

where Sr is defined as D
#"

β
#
}D

##
β
"
, and Ra is the Rayleigh number defined in the usual

manner (Hurle & Jakeman 1971). Asymptotic behaviour occurs at a finite Sm
c
value

and Ma
c
is driven to zero as rSm

c
rU¢. Chen & Chen (1994) observed this behaviour

in their numerical simulations of the surface-tension-induced Soret case. Because of
their interest in the combined buoyancy–surface-tension problem, they plotted a family
of curves in (Sr

c
,Ma

c
) space. Each curve was associated with a constant material

parameter, K, where K¯β
"
γ
#
}β

#
γ
"
. However, we find in the limit of zero gravity that

the family of curves collapses to a single curve if the abscissa is replaced with the
product, K Sr (or Sm in our notation). Results from their figures 5 and 9 reduces to
the single curve, τ¯ 0.01, in our figure 4. While our parameterization works well in the
limit of zero gravity. Chen & Chen’s material surface, K, or equivalent, is necessary to
appropriately tackle the combined buoyancy}surface-tension Soret problem, as was
their objective.

The exact location of the asymptote observed in figures 4, 5 and 6 is given by
equation (17).

Sm¢ ¯
α cotanhαSh

1
1®Dm

τ
α cotanhα

Nu

τ

. (17)

For liquid thermosolutal systems the Dufour diffusive contribution can be neglected,
Dm¯ 0 (Hurle & Jakeman 1971). If we then consider the flux boundary conditions
typically applied to the Soret problem, an insulated and impermeable surface, the
location of the asymptote reduces to a simple function of τ, Sm¢ ¯ (1(1}τ))−". This
is the identical expression for the asymptote location in (Sr

c
,Ra

c
) space, Sr¢ ¯

(1(1}τ))−", which Hurle & Jakeman (1971) derived for the case of the buoyancy-
induced Soret problem with free–free surfaces.

In our analysis, the species equations of a ternary system are always chosen such that
τ% 1, which is also consistent with thermosolutal systems. For an insulated and
impermeable free surface, the location of the asymptote is then bounded on the interval
0!Sm¢ % 0.5 for 0! τ! 1. For water–alcohol mixtures and liquid metal alloys,
typical τ values are 0.01 and 0.0001, respectively; and for such systems, we conclude
Sm¢ E τ. In addition to shifting Sm¢ to the right, the stationary stability curves are
shifted away from the abscissa (Ma

c
¯ 0), with increasing τ resulting in a stabilizing

effect on the stationary stability curves. Chen & Chen (1994) report similar findings in
(Sr

c
,Ra

c
) space for the buoyancy problem at finite Ma values. However, they
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F 5. Effect of disturbance heat and mass fluxes, Nu and Sh on stationary stability for a basic
state where ∆C{ is induced by ∆T{ . Impermeable free surface, Sh¯ 0. τ¯ 0.01, Dm¯ 0, Sh¯ 0.
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F 6. Effect of disturbance heat and mass fluxes, Nu and Sh on stationary stability for a basic
state where ∆C{ is induced by ∆T{ . Insulated free surface, Nu¯ 0, τ¯ 0.01, Dm¯ 0, Sh¯ 0.
(a) Sm
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vs. Ma
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for Sh values of 0, 10, 100, 1000, and 10). (b) Sm

c
vs. α

c
for Sh values of 10, 100, 1000

and 10).

concluded that decreasing τ (increasing Le ; Le¯ 1}τ where Le is the Lewis number
(Chen & Chen 1994)) is stabilizing in the equivalent of the upper right-hand quadrant
our figure 4(a). We believe that this inconsistency is due to reference axes and is
reconciled as follows. Chen & Chen view the shift of Sm

c
to the right as destabilizing,

since less of the quadrant area is then stable. However, the more appropriate reference
is the asymptote, especially since we can determine it exactly. Thus, our comparisons
are made based on the axes, Ma

c
¯ 0 and Sm

c
®Sm¢. While the asymptote moves

further into the upper right-hand quadrant for larger τ values, the fact that the curves
are shifted to larger Ma

c
is then stabilizing.

When a free surface with finite conductivity or permeability is considered, Sm¢ is
dependent on α in addition to Nu and Sh. In the limit of a conducting free surface,
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Sh
α

c
in

lim rSmrU¢

1 2.25
10 2.74

100 2.98
1000 3.01

T 1. Influence of Sh on asymptotic values of α
c
in the limit rSmrU¢. The concentration

gradient is induced by an imposed temperature gradient. (Nu¯ 0, τ¯ 0.01)

NuU¢, equation (17) confirms that Sm¢ U 0. As already discussed, Sm¢ lies in the
right-hand half-plane, and reaches its maximum value in the limit of an insulated free
surface, Nu¯ 0 (for Sh¯ 0). Its exact position is dependent on τ. An increase in Nu
then shifts the asymptote leftward toward the ordinate, Sm¯ 0 as observed in figure
5(a). In (Sm

c
,Ma

c
) space, this leftward displacement is stabilizing (destabilizing) to

stationary stability curves associated with destabilizing (stabilizing) temperature
gradients (figure 5a). From (17), it also follows that Sm¢ U¢ as ShU¢, which is
observed in figure 6(a). In the sense that the stationary stability curves are displaced
upwards for destabilizing temperature gradients, Sh is stabilizing. The surface
Sherwood number, Sh, is destabilizing to the right of Sm¢. However, the upwards or
downwards displacement of the stationary stability curves are largely due to the
rightward shift of Sm¢ as Sh increases. We note that for Sh¯ 100, 1000, and 10), only
portions of curves associated with destabilizing temperature gradients are visible in
figure 6(a) since Sm¢ values lie beyond the range of values shown. In the limit of a
permeable free surface, χ(1)¯ 0, and the problem reduces to the singly diffusive system
studied by Pearson (1959).

When the free surface is insulated and impermeable, Pearson’s (1959), α
c

value,
α
cp

¯ 1.9929, isobtainedalongthestationarystabilitycurves.However, ifNuorShdiffers
from zero, α

c
varies along the stationary stability curve as shown in figures 5(b) and

6(b). For varying Nu, and Sm values approaching Sm¢, the wavenumber increases
(decreases) for destabilizing (stabilizing) temperature gradients, while α

c
Uα

cp
as

rSmrU¢ (figure 5b). Near Sm¢, larger quantities of energy must be dissipated when the
temperature is destabilizing. This is most efficiently accomplished with a larger number
of smaller sized cells as noted in the previous section. Conversely, when the induced
concentration gradient is destabilizing (Sm"Sm¢), increasing Nu reinforces the
stabilizing potential of the temperature gradient, and reduced dissipation required
results in less vorticity and larger flow cells.

For the finite Sh results, in figure 6(b), we find that α
c

asymptotically decreases
(increases) as SmUSm¢ for Sm!Sm¢ (Sm"Sm¢). When rSm¢rU¢, α

c
asymp-

totically approaches the values given in table 1. Although table 1 shows that the
asymptotic values of α

c
increase with larger Sh, the reversed behaviour is observed for

Sm!Sm¢ within the physically realistic range of Sm values shown in figure 6(b). Near
Sm¢, the concentration gradient’s potential to absorb the energy released by the
destabilizing temperature gradient increases with larger Sh values. Therefore, less
viscous dissipation, consequently, less vorticity is required, leading to larger cells.
Conversely, a destabilizing induced concentration gradient requires greater dissipation
near Sm¢, leading to more vorticity (smaller α

c
). While slight changes in Nu or Sh lead

to small shifts in Sm¢, the wavenumber can deviate greatly from α
cp

near Sm¢ with
respect to the insulated-impermeable free surface.
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4. Onset of oscillatory instability

The time-dependent or oscillatory stability boundaries were computed using a
Chebyshev collection scheme. Ten collocation points were typically sufficient to give
five- and six-digit agreement with the exact solutions for α

c
and Ma

c
. Oscillatory results

at large Sm
c

values and small τ required between 15 and 25 collocation points to
achieve five- and six-digit agreement with the next lower-order accurate solution. Seven
collocation points provided two- to three-digit agreement in α

c
and Ma

c
values.

4.1. Imposed temperature and concentration gradients

Oscillatory stability boundaries in (Sm
c
,Ma

c
) space are represented by the thick lines

in figure 3. As previously noted, an insulated and impermeable free surface is applied
and Dm¯ 0. Starting from the codimension two point, all the oscillatory boundaries
in figure 3 decrease with increasing Sm

c
. The codimension two point can be viewed as

the coalescence point of two neutral modes. This coalescence is the intersection point
of the stationary and oscillatory boundaries in figure 3. Stationary solutions occur to
one side of the coalescence point, and two oscillatory solutions occur to the other side.
For small values of τ, the variation between the constant Ms

c
oscillatory branches also

become quite small, as is the case for τ values of 0.0077 and 0.1. Three oscillatory
stability branches for the constant Ms

c
values of 50, ®50, and ®100 are actually

represented along the curves designated by these τ values. Each curve begins at the
corresponding codimension two point in table 2 and decreases with increasing Sm

c
.

When both temperature and concentration differences are imposed across the layer,
stationary stability boundaries are independent of τ. In contrast, increasing τ is found
to stabilize the time-dependent stability boundaries in figure 3 for all Sm

c
values. Ho

& Chang (1988) reported the same stabilizing behaviour for their no-cross-diffusion
doubly diffusive Marangoni results. The explanation that overstability relies on
differences in D

""
and D

##
, and opposing gradients of the stability agents, temperature,

T, and concentration, C, can be extended to include cross-diffusive terms (Turner 1973;
Legros et al. 1990). For example, the combination of positive D

#"
, positive ∆T{ , and

negative ∆C{ , further retards the diffusion rate of C, therefore reinforcing oscillatory
overstability.

Cross-diffusion also leads to changing the nature of the instability. For example, in
the absence of cross-diffusion, Sm¯ 0, onset of convection is stationary for Ms

c
values

of 0 and 50, when τ¯ 0.0077. However, when Sm values exceed 0.0079 and 0.63,
respectively, for the above Ms

c
values, oscillatory onset occurs.

The effects of cross-diffusion on the stability boundaries in more typical (Ms
c
,Ma

c
)

space are examined in figure 7 for a thermosolutal system and ternary system. The
thermosolutal system is the water–methanol system considered in the buoyancy driven
Soret studies of Hurle & Jakeman (1971) and Jacqmin (1998). The ternary system is a
KCl–NaCl–water solution where both cross-diffusive coefficients are non-zero (Cussler
1995). Both systems are shown and compared to the equivalent systems in the absence
of cross-diffusion, Sm¯ 0 and Dm¯ 0. The codimension two points for these systems
are given in table 3.

Differences between the thermosolutal system, Sm¯®0.028, and no-cross-diffusion,
Sm¯ 0 are undetectable in figure 7, although our numerical results reveal that cross-
diffusion slightly stabilizes both stationary and oscillatory branches. Comparison of α

c

and ω for zero and non-zero Sm in figure 8 also suggests that the effect of the cross-
diffusion term (Sm¯®0.028) is negligible for this particular thermosolutal system. We
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F 7. Stability maps in (Ms
c
,Ma

c
) space for ∆T{ and ∆C{ both imposed across the fluid layer.

Comparisons of stability boundaries for cases ——, with and ± ± ± ± ±, without cross-diffusive terms are
shown for a thermosolutal system, Pr¯ 6.97, τ¯ 0.0077, Sm¯®0.0288, Dm¯ 0; and a ternary
system, Pr¯ 1800, τ¯ 0.772, Sm¯ 0.072, and Dm¯ 0.183. Insert shows slight destabilization along
the oscillatory branch moving away from the codimension two point.

τ Ms
co#

Sm
co#

Ma
co#

Sm
co#-"T

Ma
co#-"T

0.0077 ®50 ®6.076¬10−" 80.62 6.763¬10−" 72.52
0.0077 0 7.880¬10−$ 80.24 7.960¬10−$ 72.13
0.0077 50 6.251¬10−" 78.85 6.995¬10−" 71.25
0.1 ®100 ®8.354¬10−" 97.86 ®9.273¬10−" 89.01
0.1 ®50 ®3.958¬10−" 92.86 ®4.469¬10−" 84.01
0.1 0 1.080¬10−" 89.25 9.427¬10−# 79.01
0.5 ®100 ®5.120¬10−# 170.86 ®8.000¬10−# 158.8
0.5 ®50 1.115¬10−" 145.86 9.179¬10−# 133.8

T 2. Codimension two points corresponding to figure 3. Both temperature and concentration
gradients are imposed across the fluid layer. co2 denotes spectral and co2-1T denotes one-term
Galerkin results.

τ Sm Dm Ms
co#

Ma
co#

Ms
co#-"T

Ma
co#-"T

0.0077 ®0.0288 0 ®2.970 80.24 ®2.673 72.15
0.0077 0 0 ®0.6403 80.23 ®0.5786 72.15
0.772 0.072 0.183 ®517.7 540.7 ®467.9 488.0
0.772 0 0 ®269.6 349.2 ®242.3 313.9

T 3. Codimension two points corresponding to figure 7. Both temperature and concentration
gradients imposed across fluid layer. co2 denotes spectral and co2-1T denotes one-term Galerkin
results.

note that this is contrary to the situation when the concentration gradient is induced
by the temperature gradient as considered below in §4.2.

Careful examination of the thermosolutal oscillatory branches in figure 7 reveals that
Ma

c
gradually decreases in the direction of negative Ms

c
. We have also observed this
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F 8. Critical wavenumbers, α
c
, and frequencies, ω, corresponding to the thermosolutal system

in figure 7 are shown. α
c
vs. Ms

c
and ω vs. Ms

c
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cross-diffusivity terms for Pr¯ 6.97, τ¯ 0.0077, Sm¯®0.0288, Dm¯ 0.
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F 9. Critical wavenumbers, α
c
, and frequencies, ω, corresponding to the ternary system in figure

7 are shown. α
c
vs. Ms

c
and ω vs. Ms

c
are shown for cases ——, with and ……, without cross-diffusivity

terms Pr¯ 1800, τ¯ 0.772, Sm¯ 0.072, and Dm¯ 0.183.

destabilizing behaviour at τ (and Pr) values representative of liquid metals. Energy
stability results reported by Velarde & Castillo (1982) show a large destabilizing effect
associated with decreasing Ms

c
whereas the oscillatory boundary from their linear

stability results indicate Ma
c
is invariant to changes in Ms. Ho & Chang (1988) also

show linear stability results for the double-diffusion-Marangoni–Be!nard problem at
different values of τ. As τ decreases (from 1), the stabilizing effect of increasing Ms

c
is

reduced; however, their curve for τ¯ 0.0001 also appears as a horizontal line. Our
results show definitively that with or without cross-diffusion, decreasing Ms

c
has a

stabilizing effect on the oscillatory branch, i.e. Ma
c

increases, for moderately small
values of τ. However, for small τ values such as 0.01 (water–methanol) or 0.0001 (liquid
metals), decreasing Ms

c
does not lead directly to the constant value of 79.604 for Ma

c

but is slightly destabilizing.
For the ternary system if KCl–NaCl–water, small differences are visible between the

stability boundaries, with and without the cross-diffusive terms in figure 7. For this
system, the positive Sm value was confirmed to be destabilizing while the positive Dm
value is stabilizing, and the combined effect of the cross-diffusive terms is to destabilize
both the oscillatory and stationary stability boundaries. The cross-diffusive terms
influence the codimension two point more significantly. Figures 7 and 9 reveal that
Ms

co#
, is shifted from a value of ®269.6 neglecting cross-diffusion to ®517.7 when the

cross-diffusive terms are included. Setting Sm to zero with Dm¯ 0.183, we found that
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τ Sm
co#

Ma
co#

Sm
co#-"T

Ma
co#-"T

0.0001 1.037¬10−) 79.62 1.03¬10−) 71.6
0.01 1.026¬10−% 80.44 1.03¬10−% 72.3
0.1 9.305¬10−$ 88.68 9.35¬10−$ 79.8
1 3.370¬10−" 244.6 3.38¬10−" 220.7

T 4. Codimension two points corresponding to figure 4. Concentration gradient is induced
by an imposed temperature gradient

only stationary onset occurred over the full range of Ms
c

shown in figure 7, while
setting Dm to zero and retaining Sm¯ 0.072 leads to a codimension two point at
Ms

c
¯®180.2. In figure 9, the combined effect of the cross-diffusive terms is observed to

decrease both α
c

and ω values beyond values predicted in the absence of the cross-
diffusive terms. These results suggest that the effect of the cross-diffusive terms on the
stability boundaries, codimension two point, and ω is one of competition rather than
reinforcement when both Sm and Dm are positive. The sensitivity of the codimension
two point to both cross-diffusive terms may warrant further investigation in future
studies of ternary systems.

4.2. Induced concentration gradient (Soret problem)

Time-dependent or oscillatory neutral stability boundaries are shown in (Sm
c
,Ma

c
)

space in figure 4(a) and dimensionless frequencies are plotted in figure 4(b). The Pr
value for all results shown in 6.97.

The oscillatory branches begin at the codimension two points given in table 4 and
continue rightward with increasing Sm

c
. Increasing τ has a stabilizing effect on the

oscillatory branches as confirmed by the upward displacement of these branches in
figure 4(a). We note that even for a τ value of 1, when the characteristic diffusion times
of heat and concentration are equal, oscillatory instability is possible in the presence
of cross-diffusion. The minimum thermal-diffusion contribution necessary to establish
oscillatory instability occurs at the codimension two points of Sm

c
E 0.337 (see table

4). The oscillatory stability boundaries for τ values of 0.1 and 1 are stabilized by
increasing Sm

c
from the codimension two point, while oscillatory curves for τ values

of 0.01 and 0.0001 initially decrease (destabilizing) with Sm
c
. For τ¯ 0.01, increasing

Sm
c
is found to stabilize the oscillatory boundary beyond an Sm

c
value of 0.337. As

indicated below, this is consistent with the behaviour reported by Chen & Chen (1994)
for τ¯ 0.01. Although we suspect similar behaviour for the τ¯ 0.0001 curve, we did
not observe an upward turn of this curve while extending our calculations to Sm

c
¯ 2

(well beyond Sm
c
range for liquid thermosolutal and ternary systems). However, we

did find that the oscillatory boundary for τ¯ 0.001 (not shown in figure 4a) reaches
a minimum at Sm

c
E 1.3, at which point increasing Sm

c
leads to a stabilizing effect.

As part of their combined buoyancy}surface-tension work, Chen & Chen (1994)
present a family of oscillatory stability curves in (Sr

c
,Ma

c
) space for different K values

where K and Sr were defined in §3.2. Constant values of Pr and τ were chosen as 7 and
0.01, respectively, for their analysis. For the same reasons as noted in §3.2, the multiple
curves in their figures 6 and 8 collapse to the single curve, the τ¯ 0.01 curve, in each
of our figures 4(a) and 4(b). We again remark that Sm

c
¯KSr

c
. This would also

explain why only the K¯ 1 curve showed an initially destabilizing and then stabilizing
influence of Sr

c
on Ma

c
while all other curves (K! 1) displayed a destabilizing

influence. The effect of the smaller K values is to compress the Sr
c
range to smaller Sm

c
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F 10. Velocity, temperature, and concentration eigenvector profiles at neutral stability. ∆T{ and
∆C{ both imposed across the layer. Pr¯ 6.97, τ¯ 0.0077, Sm¯®0.028, Dm¯ 0, Nu¯ 0 and
Sh¯ 0. (a) Normalized velocity eigenvector vs. x

$
. (b) Normalized temperature eigenvector vs. x

$
.

(c) Normalized concentration eigenvector vs. x
$
.

values which are always below the Sm
c
minimum of 0.32 (for τ¯ 0.01), thus giving the

appearance that increasing Sm
c

is only destabilizing. It should be noted that most
thermosolutal systems with τ of O(0.01) have Sm

c
and Sr

c
values well below the

above minimum value.

5. Eigenvectors and spatial structure at neutral stability

In this section the spatial structures of w, φ, χ, that underlie the neutral stability
boundaries are briefly examined. Normalized eigenvectors of w, φ, χ for the basic state
where ∆T{ and ∆C{ are imposed across the fluid layer are shown in figures 10 and 11,
and the eigenvectors for a basic state where ∆C{ is induced by ∆T{ are shown in figure
12. The spatial shapes correspond to sets of parameter values on the stability
boundaries presented in §4. For example, in figures 10 and 11 the eigenvectors
associated with Ms

c
values of ®250, ®500, ®800 and ®1000 correspond to points

on oscillatory boundaries shown in figure 7. Similarly, in figure 12 the eigenvectors
associated with Sm

c
values of 0.01, 0.05 and 0.1 correspond to three points on the

(τ¯ 0.01) oscillatory stability in figure 4. In each of the nine graphs in figures 10–12, a
single eigenvector is shown which represents the spatial structure of w, φ, χ at any
point along the stationary neutral stability branches.

The w eigenvectors display the least variation, φ eigenvectors exhibit some variation
and χ eigenvectors show the greatest sensitivity to changes in Ms

c
or Sm

c
. Closer

inspection of figures 10(a), 11(a) and 12(a) reveals that the w eigenvectors are
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F 11. Velocity, temperature, and concentration eigenvector profiles at neutral stability. ∆T{ and
∆C{ both imposed across the layer. Pr¯ 1800, τ¯ 0.772, Sm¯ 0.072, Dm¯ 0.183, Nu¯ 0, and
Sh¯ 0. (a) Normalized velocity eigenvector vs. x

$
. (b) Normalized temperature eigenvector vs. x

$
.

(c) Normalized concentration eigenvector vs. x
$
.

essentially identical and invariant for all parameter values and basic states we explored.
In all cases, the maximum normalized w value of 0.357 was obtained at x

$
¯ 0.687. For

small Pr values typical of binary liquid metal alloys, we suspect that larger variations
would be observed in w eigenvectors along the oscillatory branch. The behaviour of the
φ eigenvectors approaches that of χ for the larger τ value, 0.772, of the ternary system
(figures 11(b) and 11(c)).

The χ eigenvectors associated with oscillatory flow exhibit greater distortion and
more severe spatial gradients owing to the small τ values than either the w or φ
eigenvectors. The distortion and severity of the spatial gradients are also found to be
larger for larger negative values of Ms

c
or Sm

c
. Therefore, the shape of χ, on the

oscillatory stability branch, becomes more complicated further from the codimension
two point (negative Ms

c
values) ; as well as for decreasing τ values. The computational

significance is that greater spatial resolution (or number of basis functions) of a given
numerical scheme is required to extend the oscillatory stability boundary further from
the codimension two point. Similarly, to obtain accuracy equivalent to larger τ(O(1)),
increased resolution is necessary for very small values of τ. Inspection of figures 10, 11
and 12 further suggests that the greatest impact on accuracy is achieved by adjusting
the number of χ basis functions independent of w and φ.

Careful inspection reveals that the stationary normalized eigenvectors for w, φ, χ for
each of the three cases shown in figures 10, 11 and 12 are identical. It can be shown
from the exact solutions of w, φ, χ, that spatial shapes are affected only by α.
Parameters, τ, Dm, Sm, Ma, Ms, Nu and Sh influence only the magnitudes of w, φ, χ
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F 12. Velocity, temperature, and concentration eigenvector profiles at neutral stability.
∆C{ induced by ∆T{ across the layer. Pr¯ 6.97, τ¯ 0.0077, Sm¯®0.028, Dm¯ 0, Nu¯ 0, and
Sh¯ 0. (a) Normalized velocity eigenvector vs. x

$
. (b) Normalized temperature eigenvector vs. x

$
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(c) Normalized concentration eigenvector vs. x
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.

(For stationary stability, τ plays no role when both ∆T{ and ∆C{ are imposed across the
layer.) In general, α

c
, hence the spatial solution shapes, vary along the stationary

stability. However, as McTaggart (1983) concluded, when Nu¯Sh, α
c

is constant
along the stationary neutral stability branch. This also follows in the presence of cross-
diffusion, therefore the spatial shapes of w, φ, χ or normalized eigenvectors are
invariant along the stationary stability boundary, i.e. independent of τ, Dm, Sm, Ma,
and Ms. Furthermore, the stationary solution shapes of the two basic states we have
studied are identical for an insulated and impermeable free surface (or whenever
Nu¯Sh).

6. One-term approximations

High-order weighted-residual-schemes provide high-accuracy solutions as demon-
strated in §4; however, the required numerical output to examine the effects of several
parameters is also large. An alternative approach is to develop one-term Galerkin
formulations that yield algebraic expressions from which parametric effects might easily
be examined. Such approaches are advocated in Finlayson’s treatment of weighted
residual methods (1972) and exploited during Gershuni & Zhukhovitskii’s examination
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of Rayleigh–Be!nard type problems (1976). Algebraic relations that can be used to
examine stability characteristics of the cross-doubly-diffusive-Marangoni fluid layer
are developed using a one-term Galerkin formulation.

The one-term Galerkin formulation leads to an eigenvalue problem of the form:
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The above system yields a cubic characteristic equation of the form, λ$c
#
λ#c

"
λ

c
!
¯ 0, where λ¯ ρiω, (ρ and ω are both real). Substituting the growth rate, ρ, and

frequency, ω, in place of λ, the characteristic equation is expressed as the following two
(real) equations (Gantmacher 1959).

ρ$c
#
(ρ#®ω#)®3ρωc

"
ρc

!
¯ 0, (19)

®ω$2c
#
ωρ3ωρ#c

"
ω¯ 0. (20)

Stability characteristics of the resulting cubic system are assessed by applying the
following criteria. Stationary stability occurs for c

!
¯ 0 while oscillatory stability

occurs when c
!
¯ c

"
c
#
, where ω#¯ c

"
" 0 (Finlayson 1972; Gershuni & Zhukhovitskii

1976). Criteria to determine the location of the codimension two point can also be
established.

When ∆T{ and ∆C{ are both imposed across the fluid layer, the matrix coefficients, b
i

and a
ij

are:
b
"
¯ [(DwW ,DwW )α#(wW ,wW )]}Pr b

#
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#
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Where ( f, g) is the inner product defined as:

( f, g)¯
"

!

f(x
$
) g(x

$
) dx

$
.

The success of the one-term approximation rests on constructing a ‘suitable ’ trial
function. One rule of thumb in this regard is that the trial function explicitly satisfy the
boundary conditions so that no error is introduced at the boundaries (Finlayson 1972).
For this study, the velocity trial function, equation (21), was chosen to satisfy w(0)¯
Dw(0)¯w(1)¯ 0, while the tangential stress conditions at x

$
¯ 1 is incorporated into

the weak formulation of the momentum equation as a boundary residual. The
temperature and concentration trial functions, equations (22) and (23), satisfy the
conductive-permeable conditions at the x

$
¯ 0 and insulated-impermeable conditions

at the free surface. Shapes of the trial functions are shown in figures 10, 11 and 12.
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$
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These trial functions result in the following approximate expressions for stationary
stability, oscillatory stability, frequency, and the codimension two point.

Stationary stability, c
!
¯ 0

k
"
¯

(1®Sm)Ma(1®Dm)Ms

1®SmDm
, (23)

Oscillatory stability, c
!
¯ c

"
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#

Ma(1τSm)τMs(τDm)k
&
Pr(MaτMs)
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Pr
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τ, (24)

Frequency, ω#¯ c
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Pr τ(k
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Codimension two point
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(26)

where: k
"
¯ 71.55106, k

#
¯ 20.99734, k

$
¯ 243.8594,k

%
¯ 143.1141, k

&
¯ 3.40791,

k
'
¯ 0.470219.
When ∆C{ is induced by an applied ∆T{ , equations (23)–(26) can be used by making

the substitution, Ms
c
¯®(Sm

c
}τ)Ma

c
. For stationary stability the result is :

Ma
c
¯

k
"
(1®DmSm)

1®Sm
Sm

τ
®

DmSm

τ

. (27)

The critical wavenumber was shown in figures 8 and 9 to be relatively insensitive to
location along the oscillatory boundary for the set of boundary conditions imposed.
Moreover, the α

c
from the one-term approximation is even less sensitive, with

variations of α
c
being less than 0.1% of α

"c
for the range of values shown in figures

13(a) and 13(b). Therefore, the stationary critical wavenumber obtained from the one-
term Galerkin approximation, α

"c
¯ 2.05203, was applied to determine the one-term

relationships given by (23) to (26).
The accuracy of the one-term Galerkin formulae is examined in figures 13 and 14 for

the case of ∆T{ and ∆C{ imposed across the fluid layer. The predicted stability
boundaries are in good agreement with the higher-order results for both the
thermosolutal and ternary systems shown in figures 13(a) and 13(b), respectively. One
disagreement is that the oscillatory boundary predicted from the one-term formulation
shows a stabilizing behaviour with decreasing Ms

c
, while the spectral results show

destabilization. Near Sm
co#

and Ms
co#

values, one-term computed frequencies show
satisfactory agreement with the higher-order spectral predictions shown in figures
13(b) and 14(b). For the thermosolutal system, one-term predictions quickly diverge
from the spectral solution with larger stabilizing Ms

c
values, while, better agreement
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F 13. Comparison of stability boundaries computed from the ……, one-term Galerkin and
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F 14. Comparison of stability boundaries computed from ……, the one-term Galerkin and
——, the higher-order spectral scheme (n¯ 12) for the ternary system. ∆T{ and ∆C{ are both imposed
across the layer. Nu¯ 0 and Sh¯ 0. (a) Ms

c
vs. Ma

c
for Pr¯ 1800, τ¯ 0.772, Sm¯ 0.072, and

Dm¯ 0.183. (b) Ms
c
vs. ω

c
for Pr¯ 1800, τ¯ 0.772, Sm¯ 0.072, and Dm¯ 0.183.

between the one-term Galerkin results and the spectral solution is observed for the
ternary system. Codimension two-point locations predicted by (26) are shown in tables
1 and 2, and compare quite well with the higher-order predictions.

Similar conclusions hold true for the case of ∆C{ induced by ∆T{ from inspection of
figure 15. The one-term stationary results are in excellent agreement with results from
the exact solution. The critical values predicted from the one-term formulation are in
good agreement with higher-order results. For τ¯ 0.01, the oscillatory branch
decreases with Sm

c
for Sm

c
! 0.33 and increases beyond this Sm

c
value while the one-

term Galerkin results show only the increase in Ma
c
. At larger τ values (τ¯ 0.1 shown

in figure 15a) one-term results and higher-order spectral results both show a stabilizing
influence with increasing Sm

c
. Codimension two-point locations are found to compare

quite well with the higher-order predictions in table 4.
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for Pr¯ 6.97, Sm¯®0.288, Dm¯ 0 for τ values of 0.01 and 0.1. (b) Sm

c
vs. ω

c
for

Pr¯ 6.97, Sm¯®0.0288, Dm¯ 0 for τ values of 0.01 and 0.1.

The one-term derived relationship, (26), provides reasonable estimates of the
codimension two-point location as a function of Ms

c
, Ma

c
, Sm

c
, τ and Pr. The

alternative is full numerical simulations for several sets of parameter values. As noted
in previous studies (Chen & Chen 1994; Ho & Chang 1988) determining the
codimension two point is generally very time-consuming. It is interesting that the
asymptote predicted from (27) has the exact location obtained from the exact solution.

7. Summary and conclusions

We investigated linear stability of the cross-doubly-diffusive Marangoni instability
for two different basic states. The first basic state is one where both ∆T{ and ∆C{ are
imposed across the layer, while the second case is a basic state where the imposed ∆T{
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across the layer induces a ∆C{ . Rather than adopting and extending reference quantities
from the buoyancy problem, our reference quantities were explicitly defined to attack
onset of convection driven by surface-tension variation in the zero gravity limit. This
led to the definition of a surface tension Soret coefficient and a surface tension Dufour
coefficient which function analogously to their buoyancy counterparts. The scaling
leads to a concise description of results in the zero gravity limit. The introduction of
buoyancy does require an additional parameter that relates buoyancy and surface-
tension properties (Chen & Chen 1994).

While retaining both cross-diffusion terms and general disturbance heat and mass
flux conditions at the free surface, exact solutions for stationary stability were obtained
for both basic states. The location of asymptotes in relevant parameter space were also
determined from exact solutions. For an insulated and impermeable free surface, we
found that exact asymptote location was expressed in the form identical to an exact
asymptote relation derived for the buoyancy-driven problem, (Hurle & Jakeman 1971).
Furthermore, when τ is small, as is the case for water–alcohol mixtures and liquid
metal alloys, the asymptote location, Sm¢, is approximated well by Sm¢ E τ. The
disturbance flux parameters, Nu and Sh, also affect the location of the stationary
stability asymptotes as well as overall stability behaviour. The wavenumber, α

c
, is

profoundly influenced by the disturbance heat flux conditions, and in principal can be
forced to any value in the range 0%α

c
%¢, for appropriate values of Nu and Sh.

One interesting distinction between the two basic states is the effect of τ. For ∆C{ and
∆T{ both imposed across the layer, stationary stability is independent of τ. In contrast,
for the case where ∆C{ is induced, increasing τ has a stabilizing effect on stationary
stability in (Sm

c
,Ma

c
) space. Increasing τ was also found to stabilize the time-

dependent stability boundaries for both basic states investigated.
When both ∆T{ and ∆C{ are imposed and for small τ, the oscillatory branch in (Ma

c
,

Ms
c
) space decreases with increasingly stable concentration gradients (negative Ms

c
).

This decrease of the oscillatory branch away from the codimension two point was also
observed for the double-diffusive problem in the absence of cross-diffusion. Although
this behaviour has not been reported in previous double diffusive linear stability
papers, an energy stability study by Castillo & Velarde (1982) also shows decreasing
Ma

c
with increasingly negative Ms

c
in the oscillatory regime.

Results obtained from the one-term Galerkin formulation qualitatively reflect the
stability behaviour predicted from the higher-order approximations. A practical
consequence is that the nature of the stability can be determined approximately,
without solving the numerical eigenvalue problem. Another benefit of the one-term
derived relationships of this study is a reliable estimate of the codimension two points.
It was also surprising to find that the stationary state asymptote (for induced ∆C{ )
predicted from the one-term formulation is identically the exact solution. Buoyancy
was not considered as part of the investigation; however, the one-term expressions
could easily be extended to accommodate the combined effects of buoyancy and
surface tension. Moreover, the extended one-term approximations would allow rapid
and convenient estimation of stability behaviour for the combined systems.

The first author thanks Professor N. Fitzmaurice for initial guidance with
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Microgravity Fluid Physics Program and supported by NASA’s Microgravity Sciences
Division.
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